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Countercurrent convection in a double-diffusive 
boundary layer 
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Countercurrent flow may be induced by opposing buoyancy forces associated with 
compositional gradients and thermal gradients within a fluid. The occurrence and 
structure of such flows is investigated by solving the double-diffusive boundary-layer 
equations for steady laminar convection along a vertical wall of finite height. 
Non-similar solutions are derived using the method of matched asymptotic expan- 
sions, under the restriction that the Lewis and Prandtl numbers are both large. Two 
sets of asymptotic solutions are constructed, assuming dominance of one or the other 
of the buoyancy forces. The two sets overlap in the central region of the parameter 
space ; each set matches up with neighbouring unidirectional similarity solutions at  
the respective borderlines of incipient counterflow. 

Interaction between the buoyancy mechanisms is controlled by their relative 
strength R and their relative diffusivity Le. Flow in the outer thermal boundary layer 
deviates from single-diffusive thermal convection, depending upon the magnitude of 
the parameter RLe. Flow in the inner compositional boundary layer deviates from 
single-diffusive compositional convection, depending upon the magnitude of RLef . 

1. Introduction 
In double-diffusive natural convection the driving density gradients result from 

gradients of two components having different molecular diffusivities (Turner 1974). 
Both components might be dissolved substances, such as salt and sugar. More often, 
one component is heat and the other is a solute. In either instance the physical 
mechanisms and the governing equations are essentially the same. So, without loss 
of generality, the present discussion will address the thermosolutal case, in which one 
gradient is thermal and the other is compositional. 

Double-diffusive convection provides an explanation for a number of natural 
phenomena (Huppert & Turner 1981) such aa thermohaline layering of the ocean, 
seawater intrusion into freshwater lakes, and the formation of layered or columnar 
structures during crystallization of igneous intrusions in the Earth’s crust. In 
addition, there are a number of current engineering applications (Chen & Johnson 
1984) in which double diffusion is important, such as energy storage in solar ponds, 
rollover in storage tanks containing liquified natural gas, solution mining of salt 
caverns for crude oil storage, and casting of metal alloys. 

The character of a double-diffusive convective motion depends upon the orientation 
of the two density gradients with respect to the gravitational field (Turner 1974). 
Three different cases can be distinguished. If both gradients are vertical the 
configuration resembles the Rayleigh-BBnard stability problem, except that double- 
diffusive instabilities can develop even when the net density decreases upwards and 
the system would appear to be statically stable. Alternatively, if one density gradient, 
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say compositional, is vertical and statically stable the imposition of a horizontal 
temperature gradient at a vertical or inclined boundary will induce a multicellular 
intrusive motion along the boundary. Finally, both of the density gradients might 
be horizontal, resulting in a boundary-layer flow along a vertical or inclined 
boundary. This last case is the subject of the present study. 

Previous analyses of double-diffusive boundary layers have generally been based 
upon a self-similar formulation, and the resulting ordinary differential equations have 
been solved by analytical approximations or by numerical methods (Ostrach 1980 ; 
Wilcox 1961; Saville 6 Churchill 1970; Adams & McFadden 1966; Gebhart & Pera 
1971; Chen & Yuh 1979; Carey & Gebhart 1982a,b; Nilson & Baer 1982). When the 
two buoyancy forces aid one another the fluid moves primarily in one direction, as 
in single-diffusive convection, and there is no difficulty in making accurate predictions. 
However, when the buoyancy forces oppose one another the flow structure may be 
far more complex, because opposite motions can occur within different regions of the 
boundary layer. Gebhart & Pera (1971) were the first to demonstrate the existence 
of countercurrent, or backflow, solutions to the self-similar equations. But the flow 
reversals they reported were very weak, and they pointed out that numerical 
difficulties were encountered in computing even these marginal cases of flow reversal, 
as reaffirmed by Carey & Gebhart (1982a,b). A probable explanation for their 
numerical difficulty is the existence of multiple solutions in the neighbourhood of 
incipient counterflow. 

The occurrence of counterflow us. unidirectional flow in a double-diffusive boundary 
layer depends upon the relative strength of the two buoyancy forces and on the 
relative diffusivity of the two buoyant components. The borderlines between the 
unidirectional and counterflow regimes have been mapped out (Nilson & Baer 1982) 
on the basis of self-similar analysis, by systematically sweeping through the parameter 
space and recording the parameter values whenever incipient counterflow was 
encountered. I n  the course of this exercise a loop-like multiplicity of solutions was 
found to always occur in the near neighbourhood of incipient counterflow, somewhat 
in analogy with the Falkner-Skan counterflows (Veldman 1980). Although the 
self-similar counterflows were confirmed to occur, i t  became apparent that, within 
the self-similar context, the backflow region can only be very weak and that there 
is a large region of the parameter space in which self-similar solutions are inadmissible. 
Shortly thereafter, the non-existence of similarity solutions was rigorously proved 
by Romero (1982) for a particular case in which the buoyancy forces were in close 
balance. The non-existence of similarity solutions does not imply a radical transition 
in the physical phenomena - but only that a more general class of mathematical 
functions is required to describe the motion. 

Experiments by Carey & Gebhart (1982b) and by Sammakia & Gebhart (1983) 
confirm the existence of laminar bidirectional flows along vertical ice surfaces melting 
in salt water. Although these experiments are influenced by the density extremum 
of water near its melting point (Carey & Gebhart 1981), the primary cause of the 
bidirectional motion is often the double diffusion of heat and salt; this is particularly 
true when the salinity of the water is high. Comparisons between experiments and 
calculations by Carey & Gebhart (1982a, b)  verify that the borderlines of incipient 
counterflow are properly predicted by self-similar boundary-layer theory. They point 
out, however, that a less restrictive analysis is required to predict the bidirectional 
transport problem. 

A particular motivation for the present study is the possible occurrence of 
double-diffusive boundary-layer convection in kilometre-scale chambers of molten 
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rock known to exist at  relatively shallow depths within the Earth's crust. Although 
the relatively cold wall of the chamber would generally induce a descending boundary 
layer, an opposing upward buoyancy is associated with the compositional gradients 
resulting from the hydration (Shaw 1974) or the crystal fractionation (McBirney 
1980), which occur respectively during melting or freezing at the wall. Laboratory 
simulations by Chen & Turner (1980), McBirney (1980) and Turner (1980) have 
illustrated the occurrence of bidirectional boundary-layer flows under these circum- 
stances, with compositionally altered fluid flowing up the wall to collect in a stratified 
cap a t  the top of the chamber (Walin 1971). The formation of such a stratified layer 
provides a plausible explanation for observed volcanic-eruption sequences (McBirney 
1980), a water-rich cap could lead to  explosive volcanism owing to vapour formattion 
during pressure release, and such a stratification could result in the double-diffusive 
layering motions thought to explain layered igneous intrusions like Skaergaard 
(McBirney & Noyes 1979). 

The present study explores the counterflow regime of double-diffusive boundary- 
layer convection. The analysis is based upon the method of matched asymptotic 
expansions, under the restriction that the Prandtl and Lewis numbers must both be 
large. This restriction is marginally satisfied in the applications dealing with heat and 
mass transfer in aqueous solutions; it is very strongly satisfied in the geological 
applications dealing with molten rock. The asymptotic matching procedure is first 
tested within the context of double-diffusive flows that are unidirectional and hence 
self-similar. In  applying the method to non-similar bidirectional flows the resulting 
partial differential equations are solved by a local non-similar expansion procedure. 
This approach circumvents the difficulties normally associated with integrating the 
boundary-layer equations through a region of reversed flow (Klemp & Acrivos 1972 ; 
Cebeci & Stewartson 1983). 

2. Governing equations 
The boundary-layer equations describe the transport of mass, momentum, energy 

and chemical species for a binary fluid/solute flow along a vertical wall (Gebhart & 
Pera 1971): 

au av 
ax ay -+- = 0, 

Here x and y measure distance along the wall and normal to the wall, respectively; 
u and w are the corresponding components of velocity; while 8 and q5 denote 
temperature and solute concentration. Fluid properties are presumed constant, 
except in the Boussinesq treatment of density variations resulting from thermal 
expansion (coefficient Pt) and from solutal concentration (coefficient P,). 

Consider the fundamental case in which the wall is impermeable and the temperature 
and concentration are each uniform along the wall (y = 0) and in the far field (y + 00).  
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By introduction of dimensionless variables 

the boundary conditions can be written as 

T(z ,  0) = C ( X ,  0) = 1, u(z, 0) = w ( 2 , O )  = 0, 

T(z, 00)  = C(X, 00) = 0, u(z, 00)  = 0. 
(6) 

(7) 

In taking v(z,O) = 0 we suppress any mass flux across the wall, as might occur in 
a dissolution or melting process. Under t,his rather mild restriction the roles of T and 
C are entirely interchangeable. 

Three different diffusivities appear in the transport equations : chemical diffusivity 
D,  thermal diffusivity K and momentum diffusivity v .  Because of this there are three 
different transverse lengthscales or boundary-layer thicknesses : compositional 
thickness S,, thermal thickness St and viscous thickness 6,. The ordering is 

6, % S, % sc 
in the case considered, where 

or equivalently 
v % K % D ,  

(10) 
V K 

P r = - %  1, L e = - +  1, 
K D 

in which Pr and Le are the Prandtl and Lewis numbers. 
For clarity of discussion, let us suppose that the compositional buoyancy tends to 

induce an upward motion near the wall and that the thermal buoyancy tends to 
induce a downward motion in the far field. There is no loss of generality in adopting 
these conventions ; it is only important that the buoyancy forces act in opposite 
directions and that there be a disparity of diffusivity. Thus the analysis is applicable 
either to small Lewis number or large Lewis number, since the roles of T and C are 
interchangeable. 

The interaction between the two buoyancy mechanisms depends mainly on the 
relative strength R of the buoyancy forces, 

and on the relative diffusivity Le = K / D  of the two components. As indicated 
schematically in the flow-regime map of figure 1 ,  three different situations are possible 
(Nilson & Baer 1982): 

(i) unidirectional downflow occurs when R 5 l/Let;  
(ii) unidirectional upflow occurs when R 2 l /Le;  
(iii) bidirectional counterflow occurs when l/Let 5 R 5 l /Le.  

The nature of the motion depends upon which of the components is dominant. If the 
more-diffusive component (heat) is dominant let us refer to the situation as 
outer-dominated. If the less-diffusive component (solute) is dominant let us attach the 
label inner dominated. A somewhat arbitrary division between these two regimes is the 
line R = 1/Lei which cuts through the centre of the counterflow regime. This inner- 
us. outer-dominated distinction is useful only in describing the mathematical 
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FIGURE 1. Flow-regime map showing regions of upflow, downflow and counterflow. Upward motion 
is induced by less-diffusive (inner) compositional buoyancy mechanism. Downward motion is 
induced by more-diffusive (outer) thermal buoyancy mechanisms. Numbers refer to sections of the 
paper in which various regimes are discussed. 

approach used to solve the problem, since there is obviously a broad central region 
in which neither force is clearly dominant. 

The course of our discussion is charted in figure 1, where section numbers of the 
paper are identified with corresponding regions of the parameter space. We begin in 
$3 by solving the self-similar problem of unidirectional upflow ; this serves mainly 
as a test of the asymptotic matching technique which is used throughout the paper. 
In  $4 that same technique is applied to non-similar counterfiows which are dominated 
by the inner, or less-diffusive, buoyancy mechanism. Sections 5 and 6 respectively 
address the unidirectional and countercurrent flows which are dominated by the 
outer, or more-diffusive, buoyancy mechanism. Finally, in $7 it is shown that, within 
the central part of the counterflow regime, the inner-dominated solutions of $4 are 
almost identical with the outer-dominated solutions of $6. 

3. Inner-dominated similarity solutions 
The less-diffusive component, here solute, is dominant for sufficiently small values 

of the buoyancy ratio R. In  the limit aa R tends to zero the thermal buoyancy is 
entirely absent, and the motion must be identical with single-diffusive convection 
driven by solutal buoyancy alone. That problem has been previously anelysed by 
Kuiken (1968) using the method of matched asymptotic expansions. So. here we will 
use Kuiken's scaling and his matching arguments as a starting point for our treatment 
of the double-diffusive problem. 

The partial differential equations ( 4 4 3 )  are reduced to ordinary differential 
equations by the introduction of a similarily variable p and a normalized stream 
function f (Kuiken 1968): 

Here 9+ is the stream function, c = (qp, A$/4v2)f ,  and x is measured in the primary 
direction of flow, which is taken as upward for the inner-dominated case. Under the 



186 R. H .  Nilson 

stated similarity transformation the equations take the following form, in which 
primes denote derivatives with respect to 7 : 

2f 2- 3ff ’f 
sc ’ f ”’+C- RT = 

c”+3fc’ = 0, (14) 

3fT’ T”+- = 0, 
Le 

subject to the boundary conditions 

f(0) = f’(0) = 0 ,  C(0 )  = T(0)  = 1,  (16) 

f’(w) = 0, C(OO) = T(co) = 0 .  (17) 

The key parameters are the buoyancy ratio R and the diffusivity ratio Le. The 
Schmidt number Sc also appears above, but it can be eliminated as explained in the 
next paragraph. 

The inertial terms can be deleted from the momentum equation (13) as Sc  tends 
to infinity, but the equations must then be restricted to the buoyant layer(s) close 
to the wall, where the shear forces are in balance with buoyancy forces. At the outer 
edge of this buoyant zone the buoyancy force becomes small, and so must the shear. 
Hence the boundary condition 

replaces the more familiar condition of vanishing velocity, f (  a) = 0, as rigorously 
justified by Kuiken (1968). Of course, the velocity does fall back to zero, but only 
on the much broader lengthscale of the viscous boundary layer, in which shear forces 
are balanced by inertial forces, and buoyancy forces are absent. 

Numerical solutions of the double-diffusive boundary-layer equations (13)-( 18) are 
presented in figures 2 and 3 for Le = 100 and SC+ CO. The computations were done 
using a numerical implementation of Picards’s method, as described by Nilson & Baer 
(1982). The parameter that varies in the plots is the product R Le which obviously 
increases as R increases. When R = 0 thermal buoyancy is fully suppressed and the 
velocity rises monotonically to a maximum of ~ ( o o )  = 0.51, in agreement with 
Kuiken’s (1968) single-diffusive analysis. For non-zero values of R the velocity rises 
to a local maximum a t  the outer edge of the compositional layer where 7 - 1. But 
further from the wall the opposing thermal buoyancy reduces the upward velocity. 
For R Le = 0.62 the thermal buoyancy is nearly strong enough to cause a slight flow 
reversal at the outer edge of the buoyant region. However, the more significant flow 
reversal that occurs at  even larger R Le is not compatible with the assumed self-similar 
form of the solution. 

A negative velocity at the outer edge of the buoyant region would imply that the 
stream function must eventually become negative a t  some distance from the wall. 
Within the self-similar context this would imply that the temperature and concen- 
tration increase exponentially, rather than decrease as they must in order to satisfy 
the boundary conditions. A more complete explanation of this mathematical 
difficulty is given by Nilson & Baer (1982), and Romero (1982) presents a formal proof 
that inner-dominated similarity solutions cannot exist for R Le near unity. Thus it 
will be necessary to consider non-similar flow structures, as discussed in $4. These 
non-similar solutions will require matching of an upward-flowing compositional layer 

f”(CO) = 0 (18) 
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FIQURE 2. Self-similar velocity profiles for inner-dominated flow with varying strength RLe of 
opposing buoyancy force : comparison of matched asymptotic expansions (-) with exact 
numerical results (. . . . . ). Incipient counterflow occurs at R Le = 0.62 and 0.66 respectively for 
exact and asymptotic solutions. 
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FIQURE 3. Self-similar composition and temperature profiles for inner-dominated flow : exact 
numerical solutions for various strengths of opposing buoyancy force. Thermal layer is much 
broader than compositional layer. 

with a downward-flowing thermal layer. As a prelude to these non-similar applications, 
let us first apply the same matching technique to the self-similar flows of figure 2. 
This cross-checking of similarity solutions will afford greater confidence in the 
subsequent-non-similar applications, for which no comparative solutions exist. 

At high Lewis number the compositional boundary layer is much thinner than the 
thermal boundary layer, as illustrated by the composition and temperature profiles 

7 F L Y  180 
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in figure 3. In the limit of large Le, with R Le held fixed, the inner compositional layer 
can be described by a reduced system of equations 

c” + 3fc‘ = 0, 

T =  1 ,  
with boundary conditions 

f(0) = f’(0) = 0, C(0) = 1,  

f ” ( 0 O )  = 0, C(c0) = 0. 

Within this innermost layer the temperature is essentially uniform, and the thermal 
buoyancy can be safely neglected for the inner-dominated conditions of interest, as 
for example in figure 2 where R < 0.01, The thermal buoyancy effects will, of course, 
be later included in the outer equations. The physical motivation for the no-shear 
boundary condition, f ” = 0, is apparent in the computed velocity profiles of figure 2, 
and it will be verified through the matching formalism. 

The outer thermal boundary layer can be described by a slightly different scaling 
of the similarity variables: 

This is precisely the scaling that would be appropriate for a single-diffusive flow driven 
by thermal buoyancy alone. In analogy with the inner scaling in (12), Pr now replaces 
Sc and the thermal buoyancy Apt replaces the compositional buoyancy in defining 
the scaling constant c* = (qrB, A8/4v2)f. However, very importantly, x is the same as 
before; i t  increases in the upward direction. Under this transformation, the thermal 
boundary-layer equations can be written in the following form, where primes 
represent derivatives with respect to T*  : 

f*”’- T = 0, 

T”+3f*T = 0, 

c = 0, 

subject to  the innerlouter matching conditions (verified in next paragraph) 

f*(O) = 0;  T(0) = 1 ,  

df* df 1 0.51 
d71* dq ( R  he): - ( R  he$ ’ 
- (O)=- (Co) - - -  

as well as the far-field boundary conditions 

f *”( GO) = 0, T( 00)  = 0. 

The no-shear condition is appropriate at the outer edge because the thermal layer 
is much thinner than the viscous layer whenever Pr is large. 

The matching conditions between the inner and outer buoyancy layers can be 
verified by writing the outer expansion of the inner solution as 

lim f = a, +a, q + a2 q2 +exponentially small terms (31) 
)I+Q) 
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FIGURE 4. Velocity decreases in moving outward across the thermal boundary layer because of the 
downward buoyancy forces, which oppose the upward motion established within the narrower 
compositional boundary layer: self-similar case with compositional and thermal layers both 
growing broader in upward direction. Applicable at any vertical position. 

and the inner expansion of the outer solution as 

limf* = bo+b,~*+b,r ]*2+ .... (32) 
'I*- 

A matching of the stream function between the buoyant layers requires that 

lim f ( r ] )  = R: Lef lim f*(r]*)  
Il*m 7/ *-*O 

or, with both expansions written in terms of the inner variable, 

ao+a,r]+a,r]2 = ( R L e ) ~ [ b o ~ ~ + b , p + b , r ] P  ( 3 1  - . 

(33) 

(34) 

Now, by equating like powers of 7 and by letting Le tend to infinity with R Le held 
fixed, we obtain all of the following matching conditions : 

b, = 0 +. f * ( O )  = 0, 

a, = b,(RLe)i +. f*'(O) = - 
(R Le); 

a2 = 0 --f f " ( o o ) = O .  

f '(a) 

These conditions have been previously noted in (28), (29) and (23) respectively. 
To construct a complete solution it is necessary to perform the following steps. 
(i) Calculate the inner compositional-layer solution by solving (19)-(23). This is 

simply the single-diffusive solution of Kuiken ; it never changes. 
(ii) Calculate the outer thermal-layer solution by solving equations (25)-(29) for 

some chosen value of the parameter R Le that appears in the matching condition (29). 
(iii) Form the composite solution by adding the inner solution to the outer solution 

and subtracting the common part. In this case the common part is simply the 
velocity, which was matched between the layers. Example calculations are presented 
in figure 4 and in the solid lines on figure 2. 

7-2 
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FIQURE 5. Velocity decreases in moving outward across the thermal boundary layer: non-similar 
c m  with compositional and thermal boundary layers growing broader in opposite directions. 
Applicable at mid-height location, x l L  = t .  Velocity f *' is positive downward, because that is the 
direction of motion and of boundary-layer growth in outer region. 

Velocity perturbations due to thermal buoyancy are shown in figure 4. When R Le 
is small the decrease in velocity within the thermal layer is relatively small compared 
with the dominant upward velocity that was established within the compositional 
layer nearer to the wall. But for larger RLe the upward velocity is not so 
overwhelming, and the thermal buoyancy becomes more important. Finally, for 
R Le = 0.66 the upward velocity is entirely offset by the opposing thermal buoyancy. 

The composite solutions, shown by solid lines in figure 2, are in good agreement 
with the exact numerical solutions indicated by dotted lines in that same figure. The 
agreement becomes even better when Le is larger, so that the approximate and exact 
solutions become virtually indistinguishable at Le x lo4. But all of these solutions 
are self-similar, so they cannot be used to describe the counterflow regime in which 
the inner compositional layer is flowing upward and the outer thermal layer is flowing 
downward. 

4. Inner-dominated counterflows 
Convective boundary layers generally grow broader as they travel forward. So an 

upflowing compositional layer should grow broader as it rises, while a downward- 
flowing thermal layer should grow broader as it falls. Moreover, the boundary-layer 
equations are parabolic in nature, so they can only be integrated forward in the 
timelike streamwise direction. To do otherwise would violate the physics and would 
invite mathematical difficulties, such as temperature and composition that increase 
exponentially when the stream function is negative. Thus to describe the counterflow 
situation properly it is necessary to match the upflowing compositional layer to a 
downflowing therm,al layer, such that each layer is allowed to carry information in 
its own direction of flow. 

The inner compositional boundary layer will be treated exactly the same as in the 
previous analysis of similarity flows. The single-diffusive similarity solution, which 
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satisfies the inner equations (19)-(23), will still serve as a baseflow for the inner- 
dominated non-similar solutions that are now sought. 

The outer thermal boundary-layer equations are almost the same as before, except 
that the streamwise coordinate is now x*, which is measured downward from the top 
of the wall. This alteration changes the sign of the buoyancy force T in (25). Also, 
the velocity matching condition now reads as 

f*’(O) = -f’(Oo) ~ (R?“*)t 
since the inner compositionally induced velocity f ( m )  = 0.51 now points in the 
negative-z* direction, and it varies with elevation. One might assume local similarity 
in the outer region, and simply solve the outer equations for different values of the 
parameter R Le x * / x .  But that would ignore some first-order corrections which arise 
from the variation of this parameter, and hence f*’(O), with elevation. 

The non-similar character of the outer thermal region will be addressed using a local 
expansion technique, which is described by Sparrow, Quack & Boerner (1970), 
Sparrow & Yuh (1971) and Minkowycz & Sparrow (1978); it has also been recently 
applied to natural convection on inclined surfaces (Hassan & Eichhorn 1979; Nilson 
1981). Since the equations and the symbols used there are nearly the same as here, 
only a brief outline of the method need be given. At the onset, it is presumed 
that f* and T are each functions of two independent variables q(z*, y) and [(x*). 
The transport equations (1)-(4) may then be written in the following form, where 
( 1’ = a( )/a7 and ( )& = a( va5: 

f*“‘+T = 0, (39) 

T ” + 3 c f * - g ) T  = -35f*’T5 

The corresponding boundary conditions are 

p(0) = 0, T(0) = 1, p’(0) = - f ( m ) T E ) ’ ,  X 

P ” ( m )  = 0, T(m)  = 0. (42) 

This simple form of the equations was obtained by eliminating the inertial terms, as 
appropriate for large Pr, and by choosing 5 to satisfy the ordinary differential 
equation 4d5/dz* = - 35/z*. The resulting non-similar transport equations (39)-(42) 
will be retained exactly as stated, including the derivatives with respect to the 
streamwise direction 5. An additional pair of auxiliary equations, for$ and TE, must, 
however, be generated by differentiating the original system (39), (40) with respect 
to 5. In  principle, the expansion process can be extended to higher orders by 
successive differentiations, but the experience of others and the higher-order calcul- 
ations reported in the Appendix suggest that i t  is generally sufficient to retain only 
fi and TE, and hence neglect the higher-order corrections$( and Ttt, which would 
otherwise appear in the first set of auxiliary equations. 

The auxiliary equations obtained by differentiation of (39), (40) may be conveniently 
written as follows in terms of g =$ and h = Ts: 

g’”+h = 0, 

h”+3(fch’+f*’h)+35(g’h--gh’) = 0. 

Now, the boundary conditions for T do not vary with height, so 

h(0, 5) = 5) = 0, 

(43) 

(44) 
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and h(r*) satisfies a homogeneous equation, so h = 0 is a candidate solution. Although 
this need not be the only solution when one of the boundaries is at infinity, it is 
consistent with the philosophy of the method to set the final bracket of (44) to zero 
to leave h”+3(fch)’ = 0, which can be integrated once and the boundary conditions 
applied to demonstrate that h = 0 is the appropriate solution. With h = 0, g”’ = 0 in 
(43) and hence 

9 = d o ,  5) +9’(0,5) r* +id09 f )  r*2. (45) 

The constant g ( 0 , f )  and the quadratic coefficient g”(0,fl) must both be zero because 
f*(O,[) = 0 and f*”(m, f )  = 0 for all values of f .  That leaves only the linear term, 
which can be deduced by differentiation of the matching condition (38) with respect 
to x*, noting that dx/dx* = - 1. So the h a 1  solutions of the auxiliary equations may 
be summarized as 

These results are now 

Tt = 0, (46) 

R Le x* 
f.$ = -Of(.o)(,-) (1+$)r* (47) 

substituted back into the original zeroth-order equations (39), 
(40), which are then solved numerically. 

Solutions of the thermal boundary-layer equations (39)-(42) are illustrated in 
figure 5 for various values of the parameter R Le. In all cases the vertical position 
is taken to be x/L = f, corresponding to the middle of the plate. The same curves 
might also be used to estimate the conditions at other vertical positions, by noting 
that the solutions depend mainly on the parameter R Le x*/x, with x*/x by itself 
playing a secondary role through the auxiliary non-similar adjustments. These 
velocity profiles apply to any value of the Lewis number, so long as i t  is large. 

The entire range of R Le is covered by the non-similar solutions in figure 5 together 
with the similarity solutions in figure 4. As R Le+ 00 in figure 5 the upwelling velocity 
f*’(O) of the compositional layer is negligible compared with the downflow velocity 
induced by the much stronger thermal buoyancy. In  this limit the thermal boundary- 
layer solution becomes identical with the single-diffusive thermally driven flow, and 
hencep’(oo) = 0.51 as expected. At the other end of the spectrum the non-similar 
solutions of figure 5 match up with the self-similar solutions from figure 4, as 
illustrated by comparing the similar and non-similar solutions for the particular case 
of R Le = 0.5. There is some overlap between the two families, suggesting a nearly 
continuous dependence on the data in transition between similar and non-similar flow 
regimes. However, it must be remembered that a similarity solution is the same at 
every elevation, in contrast with a non-similar solution, which varies rather weakly 
along the midsection of the plate but strongly near the ends. 

It is curious that the non-similar thermal boundary layers of figure 5 can tolerate 
either a positive (downward) velocity or a negative (upward) velocity at the outer 
edge. In keeping with previously noted difficulties and our placement of blame, one 
might expect a failure of the mathematics if the stream function were negative at 
the outer edge. However, i t  is seen that the non-similar energy equation (40) now 
contains an effective stream function F = f* - @, which stays positive at  large ?I* 
in spite of the negativep. Were it not for the non-similar correction terms, non-similar 
solutions would have been unobtainable for R Le less than about two, leaving a gap 
in our knowledge and obscuring the non-similar/similar overlap which occurs a t  
somewhat smaller values of R Le. 

Composite solutions are illustrated in figures 6 and 7 for a midheight location of 



Convection in a double-diffusive boundary layer 193 

s, 

-0.4 t lo\ u 
-0.61 I I I I I I I I I  I ~ I I I I I I I  I ILI I I I I I  I I I I I ~  

10-2 10-1 1 10 10' 

Inner similarity variable 7 

FIGURE 6. Composite velocity profilesat midheight location x/L = i, for non-similar inner-dominated 
flow. Plotted in inner variables, so that single-diffusive, compositional-only similarity solution is 
recovered aa R Le tends to zero. 
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FIGURE 7. Compositevelocity profilesat mid-height locationx/L = ifornon-similar inner-dominated 
flow. Plotted in outer variables, so that single-diffusive, thermal-only similarity solution is 
recovered as R Le tends to infinity. Velocity f *' is positive downward, as explained in figure 5 
caption. 

x / L  = 4, a Lewis number of 100 and various values of R Le. These velocity profiles 
were constructed by adding the outer thermal boundary-layer solutions of figure 5 
to the inner baseflow solution of figure 2 and then subtracting the common part. The 
outcome depends upon the Lewis number, but only because it determines the relative 
scaling of the two cross-stream coordinates 17 and ?I*. For small values of R Le the 
inner buoyancy is dominant and the overall result may be viewed as a slight 
perturbation of the single-diffusive upflow solution, as apparent in figure 6, where 
the inner scaling is used to display the outcome. At intermediate values of R Le, say 
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five or so, the downflow is nearly as strong as the upflow. Finally, for very large values 
of R Le the composite solution closely resembles a single-diffusive downflow, as best 
viewed in the outer scaling used in plotting figure 7. The solution curves in figures 
6 and 7 are identical - it  is only the scaling that has been changed to show that single 
diffusive results are recovered in the opposing limits when the relative buoyancy R 
is either very large or very small. 

In  presenting these results for large R Le we tacitly violated our original premise 
that the flow be inner-dominated. Nevertheless, we seem to have arrived at a 
reasonable description of the opposite extreme. But the validity of these solutions 
requires some checking by comparison with similarity solutions at the outer-dominated 
end of the spectrum. Also, it is probably preferable to view the outer-dominated flows 
as perturbations of the outer, single-diffusive baseflow. These tasks will be undertaken 
in $55 and 6. 

5. Outer-dominated similarity solutions 
The more-diffusive component, here heat, is dominant for sufficiently large values 

of the relative buoyancy R. In the limit as R tends to infinity the opposing 
compositional buoyancy is entirely absent, and the motion becomes identical with 
single-diffusive thermal convection. The appropriate similarity variables are then 

"*=-&P&, C*Y f*=- !J+ Pri, 
4vc*x*i 

where c* = (g/?tAt3/4v2)!, and x* is measured in the primary flow direction, which is 
taken to be downward for the outer-dominated case. These are the same outer 
variables that were used to describe the thermal boundary layer in 54. 

In  analogy to the inner-dominated equations (13)-(17) of $3, we now obtain the 
following system of ordinary differential equations : 

f*"'+T-R-'C = 0, (49) 

T"+3f*T = 0, (50) 

C"+3Lef*C'=O, (51) 

S(0) =S'(O) = 0, C(0) = T(0)  = 1,  (52) 

~ " ( C O )  = 0, C(CO) = T(co)  = 0. (53) 

with boundary conditions 

Here the inertial terms have been deleted, as appropriate for high Prandtl number, 
and hence the no-shear condition is applicable at  the outer edge. 

Numerical solutions of these double-diffusive boundary-layer equations are illus- 
trated in figures 8 and 9 for Le = 100 and various values of the parameter R Let. For 
large R compositional buoyancy is fully suppressed and the maximum velocity is 
f*'( CO) = 0.51, in agreement with Kuiken's single-diffusive analysis. For lesser R the 
compositional buoyancy tends to decrease the velocity in the inner region near to 
the wall. For R Let = 1.09 the compositional buoyancy is just barely strong enough 
to reverse the flow at the wall. It is possible to calculate weakly reversed flows for 
slightly smaller R, but any appreciable degree of flow reversal requires a non-similar 
description, as described in $6. But first let us recalculate the outer-dominated 
similarity solutions using the method of matched asymptotic expansions. 
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FIGURE 8. Self-similar velocity profiles for outer-dominated flow with varying strength, R Lei of 
opposing buoyancy force : comparison of matched aaymptotic expansions (-) with exact 
numerical results (. . . . - .). Incipient counterflow occurs a t  R Lei = 1.09 and 1.07 respectively for 
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FIGURE 9. Self-similar composition and temperature profiles for outer-dominated flow : exact 
numerical solutions for varying strength of opposing buoyancy force. Thermal layer is much broader 
than compositional. 

At high Lewis number the thermal boundary layer is much broader than the 
compositional layer, which permits an asymptotic analysis. In the outer region C = 0 
and the complete equations (49)-(53) reduce to the form 

S m + T  = 0, (54) 

T"+3PT = 0. . . ,  
f*"(O) =f*'(O) = 0, T(0) = 1, 

f*"(oo) = 0, T(oo) = 0. 
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The only questionable boundary condition is the vanishing velocity at the wall, since 
the inner buoyancy might induce an opposing motion. But here the outer solution 
serves as the baseflow, and the inner region remains to be adjusted. Justification for 
these boundary conditions derives from the inner/outer matching procedure, which 
is outlined in a later paragraph. 

The inner compositional layer is still best described by the unstarred variables 
originally applied to the inner-dominated flows of earlier sections. Thus the governing 
equations for the inner region are written as 

f - C =  0, (58) 

c.+3fc’ = 0, (59) 

f(0) = f ( O )  = 0, C(0) = 1,  (60) 

C(00) = 0. (61) 

subject to the boundary conditions 

In keeping with self-similar rules, q and f are now based upon x*, and the 
compositional buoyancy carries a negative sign, because it acts in the negative-x* 
direction. As always, we neglect the thermal buoyancy in solving the inner equations, 
partly because R is relatively small in the counterflow situations of interest, but also 
because the force exerted by the thermal buoyancy within the inner layer is always 
very small compared with the overall thermal buoyancy force, provided only that 
Le is large. 

Matching between the inner and outer layer provides the missing boundary 
condition that is needed at the outer edge of the inner layer. Proceeding as in $3, 
the outer expansion of the inner solution is equated to the inner expansion of the 
outer solution, except that this time it is most convenient to express both the 
expansions in terms of the outer variable y*: 

If Le tends to infinity with R Lei held fixed we obtain all of the following inner/outer 
matching conditions : 

b, = 0 + f * ( O )  = 0, (63) 

b, = 0 + f * ’ ( O )  = 0, (64) 

u2 = (RLei)tb, + f ” (m)  = (RLei):f*”(O). (65) 

The first two are used in calculating the outer baseflow, which simply satisfies the usual 
single-diffusive equations (54)-(57). The last condition is used to calculate the inner 
region in which the upward compositional buoyancy is active; the effect of the 
outer thermal downwash is felt through the shear-stress condition ~ “ ( c Q ) ,  which is 
applied at the outer edge of the inner layer. 

The inner solution is illustrated in figure 10 for several values of the parameter R Lei 
that appears in the following matching condition obtained from (65) : 

- d2f (a) = d2f* (0) ( R  Lei)! = 0.82(R Le;):. 
dy2 d7*2 

The numerical value of 0.82 represents the wall shear f * ” ( O )  of the outer baseflow 
solution. When R Lei is large the downward shear force of the outer region is much 
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FIGURE 11. Composite shear-stress profiles (-) from asymptotic solutions compared with exact 
solutions ( * * * * 1 ) : self-similar caae for outer-dominated flows, same as in figures 8 and 9. 

greater than the upward buoyancy force of the inner layer. Thus the shear force is 
nearly constant in crossing the compositional layer, as apparent in figure 10. But for 
smaller R the upward buoyancy becomes more significant, and for R Lei = 1.07 the 
shear at the wall is reduced to zero, indicating a condition of incipient counterflow. 

Composite profiles of the shear stress are presented in figure 11 for Le = 100 and 
various values of the parameter R Lei. These profiles were constructed by adding the 
inner solutions of figure 10 to the outer single-diffusive baseflow and then subtracting 
the common part, which in this caae is the shear stress, which was matched between 
the two layers. For large enough R the outer solution is unperturbed. At R Lei = 1.07 
backflow is incipient. The matched asymptotic expansions (solid lines) are in good 
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agreement with the exact numerical solutions (dotted lines), which were calculated 
from the complete equations (49)-(53). 

The composite velocity profiles in figure 8 were constructed by numerical integration 
of the composite shear profiles just presented in figure 11. The agreement between 
the matched asymptotic expansions (solid lines) and the exact numerical solutions 
(dotted lines) is very good near the wall, but only marginal in the outer region. This 
is apparently because the outer velocity is an integral measure of the error committed 
in approximating the shear stress. Even so, the level of approximation is adequate 
at Le = 100, and agreement improves at higher Le. It is possible to reduce the 
discrepancy by including additional, higher-order, terms in the asymptotic expansions, 
but our present goal is general understanding, rather than high-level accuracy. So 
let us go on to apply the same first-order matching procedure to the outer-dominated 
portion of the counterflow regime. 

6. Outer-dominated counterflows 
In  the non-similar counterflow regime each buoyancy layer grows broader as it 

advances. Since the outer layer is now dominant the baseflow solution is naturally 
the single-diffusive downflow induced by the thermal buoyancy acting alone. The 
weaker upflow zone lies close to the wall, and it must overcome the downward shear 
force at its outer edge. 

The following inner compositional boundary-layer equations are analogous to the 
non-similar outer equations (39)-(42) used previously to analyse the inner-dominated 
counterflows : f”’+c = 0, 

C”+3(f-Ut)C‘ = -3Ef‘C,, 

f(0) = f’(0) = 0, C(0) = 1, 

Note that the buoyancy force now carries a positive sign, since it acts in the direction 
of the inner flow, and the shear force at the outer edge is now considered negative. 

The non-similarity of the inner equations results from the fact that the shear stress 
at the outer edge varies with elevation. In analogy with the inner-dominated case, 
the auxiliary non-similar equations equations yield the simple analytical solutions 

These results are substituted into the inner boundary-layer equations (67)-(70), and 
a numerical integration provides the h a 1  solution. 

Solutions of the compositional boundary-layer equations (67 )-( 72) are illustrated 
by solid lines in figure 12 for various values of the parameter RLei. In all cases the 
vertical position is taken as x*/L = t ,  corresponding to midheight. The same curves 
might also be used to estimate conditions at other vertical positions by noting that 
solutions depend mainly on R(Le x * / z ) i ,  with x*/x itself playing a secondary role. 
Also note that these inner solutions apply to any large Lewis number. It is only when 
the composite is constructed that a particular Le must be selected. 

The entire range of R Lei is covered by the non-similar results (solid lines) together 
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FIGURE 12. Velocity profiles in the inner region are influenced by the opposing shear force of the 
descending thermal layer; the parameter R Lei is a meaaure of this influence. Non-similar solutions 
(-) at mid-height x / L  = $ c~gree with similarity solutions ( * . * * * .) at borderlie of incipient 
counterflow (i.e. R Lei - 1). 
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FIGURE 13. composite velocity profha a t  midheight location x / L  = 4 for non-similar outer- 
dominated flow. Plotted in outer variables so that single-diffusive, thermal-only similarity solution 
is recovered an R Ld tends to infinity. Non-similar composites (-) agree with similarity solutions 
( - * * * ) at incipient counterflow. 

with the similarity solutions (dotted lines), which are a11 presented in figure 12. As 
R Lei tends to zero the downward shear force exerted by the outer thermal layer is 
negligible compared with the much stronger compositional buoyancy force. In  this 
limit the compositional boundary layer becomes identical with a single-diffusive flow, 
and hencef(o0) = 0.51. At the opposite extreme, the non-similar solutions match up 
with the previous outer-dominated similarity solutions of $5, a~ illustrated in 
figure 12 by including both solutions for R Lei near unity. Thus the limiting behaviour 
is correct for small and large R. 
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Composite solutions are illustrated in figure 13 for the mid-height location x*/L = 4 
with Le = 100, and various values of R Lei. For large values of R Lei the outer flow 
overpowers the inner, and conversely for small values of the parameter. At 
intermediate values of R Lei, say 0.2 or so, the upflow is nearly in balance with the 
downflow. 

7. Overlap between outer-dominated and inner-dominated solutions 
Two complete sets of counterflow solutions have now been derived, one called 

inner-dominated and the other outer-dominated. It has already been observed that 
each set properly matches up with its neighbouring unidirectional similarity flows. 
But i t  remains to  demonstrate that  some degree of overlap exists between the two 
sets, as one might expect t o  occur in the central portion of the counterflow regime. 
Now the opposite margins of the counterflow regime are located a t  R Le = 0.7 and 
R Lei = 1 .O, so let us take 

RLek = 1 (73) 

as a rough indicator of the central territory where an overlap should occur. I n  
particular, we will consider the case 

Le = 100, R = 0.1, (74) 

which complements all of the previous calculations for Le = 100. 
The mid-height location with x * / x  = 1 serves as a preliminary testing ground. The 

inner-dominated solution of figure 7 for RLe = 10 should be the same as the 
outer-dominated solution of figure 13 for R Lei = 0.5. Both solutions show a very weak 
upflow near the wall and a strong downflow withf*’(m) = 0.3 at the outer edge. Thus 
the agreement is very good. 

Another test of the inner-dominated/outer-dominated overlap is illustrated in 
figures 14 and 15, which display the non-similar velocity profiles at various distances 
x / L  from the bottom of the plate. The only difference between these figures is that  
the former is plotted using inner scaling and the latter using outer scaling. I n  both 
plots, the upper elevations were calculated using inner-dominated methodology and 
the lower elevations using outer-dominated methodology, as indicated by the solid 
us. dotted lines. The inner-dominated solution is nearly identical with the outer- 
dominated solution a t  x / L  = 0.7, and the overlap extends over a considerable 
midsection of the plate. 

The inner variables of figure 14 are most appropriate for viewing the motion near 
the top of the plate. The solid lines represent composite solutions obtained by the 
inner-dominated analysis of $4. Near the top of the plate x*/x is small, and hence 

RLex*/x < I ,  (75) 

which suggests that  the thermally driven downflow should not greatly perturb the 
upflow. Physically, the upflowing stream has run a long way and has considerable 
breadth at the higher elevations, so i t  is able to overpower the thermal downflow, 
which is just getting started on its downward run. It is therefore surprising to see 
that the thermal downflow becomes well established on the upper quarter of the plate. 
It must be remembered, however, that  convective boundary layers grow thicker like 
the fourth root of distance, increasing quite rapidly near the start, but only weakly 
further on. The large initial growth rate of the thermal layer is felt very strongly in 
the non-similar corrections, which are proportional to x/x* near the top of the plate, 
as seen in (70). I n  leaving figure 14, note that the upflow velocity persists at relatively 
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FIQURE 14. Composite velocity profiles at various elevations. Plotted in inner variables so that 
solution tends toward inner-dominated similarity solution at the top of the wall. Upper profiles 
(-) calculated from inner-dominated methodology ; lower profiles ( . . . . . . ) calculated from 
outer-dominated methodology; both solutions are identical at x / L  = 0.7. 

Outer similarity variable v+ 
FIQURE 15. Composite velocity profiles at various elevations. Plotted in outer variables so that 
solutions tend toward outer-dominated similarity solution at bottom of the wall. Upper profiles 
(. . . . . . ) calculated from inner-dominated method; lower profiles (-) from outer-dominated 
method; both identical at x / L  = 0.7. 

low elevations. Even at x / L  = 0.2, the upflow velocity is about 25% as large as i t  
would have been in the single-diffusive case, wheref(m) = 0.51 at all elevations. 

The outer variables of figure 15 are most appropriate for viewing the motion at 
the bottom of the plate. The solid lines represent composite solutions obtained by 
the outer-dominated analysis of $6, which showed the outer flow is not greatly 
perturbed by the inner buoyancy, provided that 

(RLei)i(--) x* f > 1. 
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FIQURE 16. Composite velocity profiles at various elevations. Compare with figure 14. Lewis number 
is now much larger, but both have some value of R Let = 1, placing both in the central part of 
counterflow regime. Higher Lewis number tends to decouple layers. 
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FIGURE 17. Composite velocity profiles at various elevations. Compare with figure 15; both have 
the same value of R Lei = 1 placing both in central part of counterflow regime. Higher Lewis number 
tends to decouple layers, so outer and inner regions more closely resemble their respective similarity 
solutions. 

Thus the thermal downflow should dominate near the bottom of the plate, where x * / x  
becomes very large. The thermal downflow is broad and fast at the bottom of its run, 
so the inner layer is hardly able to rise against it. Finally note that the downflow 
velocity retains at least 20 yo of its unperturbed, single-diffusive strength 
cf"'( 00)  = 0.51) over nearly 90 % of the plate. 

The influence of the Lewis number can be assessed by comparing figures 14  and 15 
with 16 and 17. Both sets share the same value of RLe: = 1,  but the Lewis number 
is increased from lo2 in 14 and 15 to lo4 in 16 and 17. A higher Lewis number tends 
to increase the separation between the buoyant layers, which weakens the coupling 
between layers. 
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8. The ends of the plate 
Although the flow conditions in figures 14-17 are relatively uniform along the 

mid-section of the plate, rapid variations are predicted to occur near the ends, 
particularly near the top. The validity of these near-end predictions is, however, 
somewhat questionable owing to a number of mathematical and physical considera- 
tions. At the upper edge of the plate the present asymptotic solutions lose their 
validity, since the downflowing thermal layer, presumed to begin at the top, 
ultimately becomes thinner than the rising compositional layer, in conflict with our 
matching arguments. Fortunately, this inconsistency is restricted to a very small 
domain (roughly, M I L  - RILe) owing to the very rapid, fourth-root growth of the 
thermal layer near its origin. A more serious difficulty is the presence of singularities 
at  the upper and lower edges, where the falling and rising layers are respectively 
presumed to originate. Near these singularities (roughly within a few percent of the 
plate length) the accuracy of the non-similar solution technique becomes progressively 
degraded as the higher-order streamwise derivatives become larger. It is possible to 
remedy the situation by including additional terms in the non-similar expansion, as 
illustrated in the Appendix, but the effort is probably unwarranted, because the 
singularities are more of a mathematical annoyance than a physical reality. Laboratory 
observations suggest that the singularities (i.e. origins of the boundary layers) are 
smeared out and shifted above and below the plate owing to the recirculations 
occurring at the ends. 

The experiments of Carey & Gebhart (1981, 19823) and Sammakia & Gebhart 
(1983) show that some of the upward-moving fluid at the top of the plate is 
recirculated into the thermally driven downflow. The rising stream carries thermally 
differentiated fluid above the plate, causing an upward extension of the thermal 
boundary layer. The mathematical model, however, assumes that the thermal 
boundary layer begins at the top, so it should tend to underestimate the influence 
of the negative thermally induced buoyancy near the top. 

Similarity solutions and non-similar solutions of the type considered here satisfy 
the partial differential equations and the cross-stream boundary conditions, wall and 
far-field, regardless of the origin(s) of the streamwise coordinate(s). In  unidirectional 
boundary-layer flows there is no upstream influence, which clearly places the origin 
of the streamwise coordinate at the leading edge of the plate. In the present problem, 
however, the origin of the thermal layer lies somewhere above the top of the plate, 
owing to the recirculation above. Kuiken (1983) points out, that an ambiguity of the 
origin can sometimes be resolved by enforcing an additional condition such as the 
location of a sink, the prescription of a temperature or velocity at a particular 
location, or a requirement on the global conservation of mass or energy. Barenblatt 
& Zeldovich (1972) likewise explain the similarity solutions are often valid only within 
a limited, or asymptotic, range of the timelike (here streamwise) variable and that 
global conservation principles can sometimes be used to remove the indeterminancy 
associated with the absence of initial conditions. 

A shift of the upper origin provides a physically plausible and computationally 
simple means of assessing the influence of recirculation above the plate and 
accounting for it in a first-order fa,shion. As an upper bound, suppose that all of the 
rising fluid were recirculated into the downflowing layer. Conservation of mass then 
requires that the stream function be zero a t  the outer edge of the boundary layer 
at  the top of the plate. At high Prandtl number, this implies a slight downflow in 
the thermal layer a t  the top. As Pr goes to infinity the requirement would be one 
of incipient counterflow at the outer edge. Examination of figures 14 and 16 shows 
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that this condition is met when x / L  x 0.95 for Le = 100, and even higher for 
greater Le. Thus a slight upward shift of the origin should compensate for a complete 
recirculation of the mass. I n  reality, only a fraction of the upflow is recirculated. The 
compositionally altered fluid that drives the upflow has a relatively large buoyancy 
and the chemical diffusivity is relatively small, so this part of the plume should rise 
far above the plate. Flow reversal and recirculation should, however, be experienced 
by the rising fluid that has not been compositionally altered but is dragged above 
the plate by viscous contact with the buoyant part of the plume. 

Specific features of a particular application may determine the details of the end 
conditions. Carey & Gebhart (1981,19823) explain that the outcome of their 
experiments is influenced somewhat by whether or not the vertical ice wall is partially 
or fully immersed in the salt-Walter bath. Full immersion results in the recirculation 
process noted above. Partial immersion results in the accumulation of compositionally 
differentiated fluid at the surface, as in box-filling stratification experiments of Turner 
(1980) and McBirney (1980). I n  the intended application to magma chambers i t  is 
expected that the compositionally altered plume would rise into the stratification and 
that the thermally induced downflow would produce a large-scale toroidal rotation 
of the core, as discussed by Nilson, McBirney & Baker (1985). 

Although the present analysis does not directly address the end conditions, there 
is considerable flexibility to satisfy the specifics of particular applications. Most 
importantly, it appears that  the flow along the midsection of the plate is relatively 
insensitive to the end conditions, since only a slight shift of the coordinates is needed 
to compensate for full recirculation us. no recirculation. The total transport of heat 
and mass should share that insensitivity, since they depend upon the integral of the 
cross-stream gradients of temperature and composition along the entire plate. These 
global-transport integrals might also be used to remove the indeterminacy of the 
upper and lower origins. 

9. Summary and discussion 

considered in preceding sections. 

the asymptotic matching of velocity between buoyancy layers. 

The overview map of figure 1 provides a reminder of the four different flow regimes 

93. Inner-dominated similarity solutions of figure 2 served as a testing ground for 

94. Inner-dominated counterflows are depicted in figures 6 and 7. 
95. Outer-dominated similarity solutions of figure 8 served as a testing ground for 

96. Outer-dominated counterflows are depicted in figures 12 and 13. 
asymptotic matching of shear stress between layers. 

I n  the inner-dominated similarity solutions of 9 3 the thermal and compositional 
layers both grew broader in the upward direction. I n  the outer-dominated similarity 
solutions of $5 the thermal and compositional layers both grew broader in the 
downward direction. However, in the counterflows of 954 and 6 each of the layers 
grew broader in its own direction of flow, resulting in the non-similar structures 
depicted in figures 14-1 7 .  

Consistency among the various classes of solutions was demonstrated in three ways : 

(i) figure 6 shows that the inner-dominated similarity solutions (dotted) closely 
resemble their non-similar neighbours (solid) at the borderline of incipient 
counter flow ; 

(ii) figure 12 shows that the outer-dominated similarity solutions (dotted) closely 
resemble their non-similar neighbours (solid) a t  the borderline of incipient 
counterflow ; 
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(iii) figures 14-17 demonstrate good overlap (dotted to solid) between the counter- 
flow solutions obtained by inner-dominated vs. outer-dominated methodology. 

Recall here that the similar/non similar comparisons in figures 6 and 12 were made 
at  the mid-height location x /L  = !j and that differences do exist near the ends of the 
plate. Also, it  appears that, within the self-similar regions of the parameter space, 
non-similar solutions are also admissible. The observed continuous dependence on 
data would, however, suggest that the boundary lines in figure 1 do represent fairly 
smooth transitions between similar and non-similar behaviour. 

Although many of our examples have addressed the particular case of Le = 100, 
the profiles of figures 5 and 12 do have considerable generality. Figure 5 shows the 
influence of upwelling compositional layer on the outer thermal downflow; the 
parameter R Le is a measure of this influence. Figure 12 shows the influence of the 
thermal downwash on the inner compositional upflow; the parameter R Lei is a 
measure of this influence. Together, these two plots provide a reasonable indication 
of mid-height conditions within both layers for any combination of R and Le. Of 
course, the intermediate zone between the layers will always have some dependence 
on Le, but the inner and outer extremities are not greatly influenced by this whenever 
Le is large. 

Counterflow conditions are often relatively uniform along the central portion of 
the plate, as apparent in figures 14-17. Near the bottom of the plate the motion 
becomes nearly identical with single-diffusive thermal convection. Near the top the 
motion tends toward single-diffusive compositional convection. These trends toward 
inner dominance near the top and outer dominance near the bottom are a primary 
non-similar feature of the bidirectional flows. The same trends were observed in the 
experiments of Carey & Gebhart (1982b) and Sammakia & Gebhart (1983). 

Recirculation above the plate can be accounted for by an upward shift in the origin 
of the descending thermal boundary layer, in keeping with the fact that thermally 
differentiated fluid is dragged above the plate by viscous contact with the compo- 
sitionally buoyant plume. This modification alleviates the local difficulties associated 
with the usual boundary-layer singularity. In comparing bounding cases of complete 
recirculation vs. none the influence was found to be localized near the top of the plate, 
for the parameters considered, with little impact on the global character of the flow 
field. 

Further numerical calculations like those presented here can be easily undertaken 
by an interested reader. The ordinary differential equations in @4 and 6 can be solved 
by a number of standard methods, using widely available general-purpose algorithms. 
Application to double-diffusive convection in magmas is discussed in a separate paper 
(Nilson et al. 1985), which includes the effects of viscosity variations spanning many 
orders of magnitude. 

The focus of discussion has been the interaction between counterflowing boundary 
layers driven by opposing buoyancy forces. The interaction has been characterized 
by asymptotic matching of shear and velocity between layers. Although such an 
analysis is not precise, particularly in its non-similar implementation, it does provide 
insight into the nature of the interaction, some measures of its strength were identified 
( R  Le and R Lei), and a simple computational procedure was demonstrated. 

Appendix. Verification of non-similar solutions 
The non-similar solutions presented in $54 and 6 are computed using a two-term 

expansion. The first term is equivalent to a local similarity analysis. The second term 
takes into account the streamwise variations in stream function and temperature, 
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fs and Ts, but the higher-order corrections involving fgs, TcE and above have been 
truncated. This is not an  asymptotic expansion, nor can it be formally justified in any 
limiting parameter range, so there is a need for a posteriori verification. 

A number of internal checks have already been presented in the main text. Each 
of the two non-similar solution families, inner-dominated and outer-dominated, was 
found to  match up reasonably well with the corresponding similarity solutions a t  the 
respective borderlines of incipient counterflow. Since that is a comparison between 
similar and non-similar solutions, it is not so much indicative of precision as of 
consistency and of reasonably smooth dependence on the physical parameters. A 
better indicator of accuracy is the observed overlap between the two non-similar 
solution families, as illustrated in the text by comparing results a t  midheight and 
slightly above. The overlap is generally quite good over the midsection ranging from 
0.25 < x / L  < 0.75, with reasonable overlap often extending within 10 yo of the ends. 
Considering the very different constructions used to  generate the two families of 
non-similar solutions, i t  seems highly improbable that the observed agreement is the 
result of ‘equivalent ’ errors in both solutions. Instead, the overlap should occur only 
in those regions where both of the two-term expansions are reasonably valid. 
Disagreement suggests that additional terms are needed in one of the non-similar 
expansions, and hence the over-extended one should be ignored. 

The previous experience of others is also helpful in estimating the probable 
accuracy of the two-term non-similar solutions. The non-similar expansion technique 
used here has been previously applied to dozens of problems concerning convective 
motions in boundary layers. The bulk of that  work was accomplished by Sparrow, 
Minkowycz and Eichhorn in concert with a number of other colleagues, as indicated 
by the sampling included in the present reference list. I n  most of those studies, results 
are reported for the first three levels of truncation (i.e. expansions including one, two 
or three terms). The agreement between the second and third levels has invariably 
been good enough to suggest that  the second level is generally adequate for 
engineering analysis. The remainder of this Appendix presents such a comparison 
among the first three levels of truncation for the double-diffusive boundary-layer 
problem under consideration here. 

The basic system of differential equations and boundary conditions for the outer, 
non-similar region of the inner-dominated flows is given in (39)-(42). A one-term ‘local 
similarity’ solution can be calculated by neglecting the$ and Ts terms in (40) and 
solving directly. 

The first set of auxiliary equations, generated by streamwise differentiation of 
(39)-(42), can be stated as follows in terms of the dependent variables g = G, 
G = E2Cs, h = [Ts and H = t2Tts: 

g“+h = 0, (A 1) 

(A 2) 

(A 3) 

h” + 3( f * -9 )  h’ + 3( f *’+ 9’) h = - 3( f *’ H -  T’G), 

h(0,O = h(m, t )  = g ( 0 , t )  = g”(=), t )  = 0, 

subject to the boundary conditions 

g ’ ( 0 , t )  = -tf’(m)(RLe-) x* -t (I+:). 
X 

These differential equations are equivalent to  (43)-(44), except for a slight change 
of notation and the retention of H and G on the right-hand side of (A 2). The two-term 
non-similar solutions in the text were calculated by setting H and G equal to zero 
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and solving (39) and (40) along with (A 1)  and (A 2) forf*, T, g and H as functions 

The second set of auxiliary equations, generated by streamwise differentiation of 
(Al )  and (A2) and by dropping the third-order derivatives$& and Tssr, can be stated 
as follows : 

of ’I. 

G + H = O ,  (A 5 )  

(A 6) 

(A 7)  

H” + 3(f*-g) H’+6(f*’+g’) H = 3G(T’+2h’) -3429’ + G ) ,  

H ( O , [ )  = H ( a , [ )  = G(O,[) = G”(co,[) = 0, 

subject to the boundary conditions 

G ( O , [ ) =  +$f’(cm) ( RLe- “z*)y; -+-+- “z* i(zZ*)p). - 

Three-term nonsimilar solutions are calculated by solving the coupled equations (38), 
(39), (A l) ,  (A 2), (A 5) and (A 6) forf, T, g, h, G and Has  functions of 7. For simplicity 
of coding, these ordinary differential equations were recast into a system of 15 
first-order equations, which were solved by standard shooting methods, using a 
RungeKutta integrator to  march the equations and a nonlinear equation solver to 
adjust the 6 unknown shooting parameters. All error tolerances were set and met 
at lo+. 

A comparison of the results obtained at  the first, second and third levels of 
truncation is presented in figure 18 for the parameter values R Le = 1.318 and x / L  = 4 
(i.e. x * / x  = 1) .  The corresponding values of the shooting parameters for the three-term 
solution are f’(0) = 0.7236, T(0) = -0.8162, g”(0) = -0.0492, h’(0) = -0.0688, 
G ( 0 )  = - 2.000, H’(0) = 0.2142, with the far-field boundary conditions set at ‘I = 7.0. 
The one-term solution is a poor approximation to the higher-order solutions, but the 
second and third levels of truncation give almost the same results. Note that this is 
a very severe test case, in which the upwelling velocity of the inner layer is large 
enough to reverse the flow completely in the outer non-similar thermal layer (see 
figure 5).  Additional comparisons were also made at higher elevations, where 
convergence should be degraded, but the agreement was still acceptable at a height 

A similar comparison for the inner, nonsimilar region of an outer-dominated flow 
is presented in figure 19, which corresponds to figure 12 of the text. The differential 
equations are the same as those noted previously, but the boundary conditions are 
derived by differentiation of (69) and (70). The physical data and shooting parameters 
for the third-level solution are now 

R Lei = 0.1428, x / L  = i, f”(0) = 0.6193, T’(0) = -0.7409, g”(0) = -0.1879, 

of x / L  = 0.9. 

h’(0) = -0.1532, G“(0) = -0.3000, H’(0) = -0.0167, 

with boundary conditions set at 7 = 7.0. The agreement between second and third 
levels is comparable to that observed in figure 18. This time, however, the one-term 
‘ local-similarity ’ approximation is greatly improved. The comparison between 
second and third levels is nearly as good under the complete flow reversal that occurs 
at R Lei x 0.5, but the one-term solution is no longer obtainable at that point, because 
the stream function is everywhere negative. 

Although the first and second levels of truncation are very easily calculated by 
shooting or by Picard’s method, the third level is considerably more difficult. In 
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FIQURE 18. Comparison of non-similar solutions obtained at first, second anc third levels of 
truncation for the outer region of an inner-dominated flow with R Le x 1.3 (see also figure 5). 
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FIQURE 19. Comparison of non-similar solutions obtained at first, second and third levels of 
truncation for the inner region of an outer-dominated flow with R Lei x 0.14 (see also figure 12). 

shooting, i t  is necessary to generate a sequence of solutions for successively large 
choices of the interval length in order to avoid the problems associated with 
exponentially growing parasitic solutions. Also, there are multiple third-level solutions 
for given choices of the physical parameters, requiring special precautions to ensure 
that the root finder stays on the correct branch. Since it appears that the two families 
of solutions are distinguished by the sign of G ( O ) ,  solutions were generated for 
selected values of G ( O ) ,  treating the physical parameter R Le or R Lei as one of the 
adjustable shooting parameters to be determined during the solution. Fortunately, 
the relatively good agreement between the second and third levels suggests that two 
terms are generally sufficient. 
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